Experience Building a Large Corpus
for Chinese Lexicon Construction

Thomas Emerson and John O’Neil

1 Introduction

The World Wide Web (WWW) provides a large and constantly
growing renewable source of natural language data in many of
the world’s languages. Computational linguists and lexicographers
have been trying to harness this bounty (and arguing about its
applicability to any given task) for over six years (Kilgarriff and
Grefenstette 2003). This chapter discusses our experience with
using the Chinese Web for lexicon construction, focusing on the
low-level details and problems we experienced during our initial
proof-of-concept experiments.

1.1 Chinese text segmentation

Chinese is written without the use of spaces between words, which
is problematic for natural language processing (NLP) applications
which operate on words, information retrieval and data mining be-
ing two important and lucrative examples. The importance of ac-
curately segmenting Chinese has made it an area of active research
(Sproat and Emerson 2003; Wu 2003; Gao et al. 2004) around the
world, and a variety of methods are used.

Initial attempts at addressing the problem used a variety of
dictionary-based methods, such as maximal-matching: starting
from the beginning of each sentence find the longest match in
a dictionary, and move forward until the sentence is exhausted.

41

WaCky!

If a multi-character word cannot be found, then it is treated as
a single character word and we move to the next position. Mod-
ifications of this simple algorithm to account for word frequency
and other heuristics (such as POS compatibility) have been pro-
posed. These techniques are often only as good as the dictionary
that supports them, and as is well known constructing a lexicon is
a time consuming (and often expensive) proposition. Further, un-
less the dictionaries are regularly updated they soon become stale
as new words are used.

The lexical approach to word segmentation was overshadowed
by the use of various statistical methods. These systems can be
quite effective, so long as the text being processed is similar to
that used to train them. These methods also suffer from a severe
resource bottleneck problem, since they a priori require segmented
text, which is (like lexicons) time consuming and expensive to
obtain.

Recently more hybrid approaches have been proposed that uti-
lize a mixture of statistical and lexical information. While these
systems would seem to mitigate each other’s limitations, they still
need a comprehensive lexicon.

Building an electronic Chinese lexicon for use in a segmenta-
tion system is problematic: to generate the dictionary you need
to segment a text collection, but to segment the text collection
you need the lexicon. Substantial work has been done on devel-
oping techniques for constructing lexica with little or no human
supervision from unsegmented text (Ge et al. 1999; Chang and
Su 1997; Lin and Yu 2004; Jin and Wong 2002). In all cases the
various techniques require a significant corpus to work on, due to
the Zipfian nature of word frequency distributions (Baayen 2001).

1.2 Using corpora for linguistic analysis

Collecting a large corpus of Chinese text is challenging and difficult
on its own, but of course the purpose of corpus collection is to

42

Thomas Emerson and John O’Neil

put it to good use. Extracting information about Chinese from a
corpus poses a number of unusual challenges, and it is illuminating
to discuss them, especially in comparison to corpus work in other
languages.

Possibly the most common task for which corpora are used is
lexical development, and this is precisely where the first difficulty
lies. Because Chinese words are written without interstitial white
space, it is necessary to develop a tokenizer for Chinese before one
can develop a dictionary from a corpus. However, since the most
obvious ways to tokenize arbitrary Chinese text involve using a
lexicon, we immediately have a chicken-and-egg problem.

In practice, it has almost always been easier to use an existing
lexicon to form the core of a tokenization tool, since lexica are
more common than large tokenized corpora. (Of course, both
can be used together, leading to systems that employ both lexical
and statistical knowledge for segmentation.) In the absence of a
good corpus, or in the absence of a corpus relevant to the domain
of interest, and with a lack of relevant training data, a purely
corpus-driven, unsupervised approach must be chosen.

Work on Chinese segmentation using only corpus materials has
been an active research topic for some time (Sproat et al. 1994;
Sun et al. 1998), and is still active (Gao et al. 2004). In general,
abstracting away from statistical details, these methods look for
sequences of characters that occur together more often than ex-
pected, and the more often they co-occur, the more likely they
are to form a single token. This takes place in the context of an
assumed segmentation algorithm. Any reasonable segmentation
algorithm has to balance the absolute likelihood of a token, the
likelihood of a token in a context, the total likelihood of a pro-
posed segmentation of an entire sentence, and the possibility that
there might be a new word in the sentence. These choices affect
what lexical items are found, and how sentences are segmented.

Because these choices all have effects on the statistical anal-

43

WaCky!

ysis of the corpus, it can be difficult to create a consistent seg-
mentation standard across a corpus, using entirely unsupervised
methods. Since there is no generally accepted definition of what
constitutes a word in Chinese, it can be unclear for an unsuper-
vised learner, as it is for a human, how to decide on an appropriate
level of granularity for segmentation, and apply it consistently. A
lexicon is not created in a vacuum, and it can be difficult using un-
supervised learning to create a lexicon useful for tasks other than
segmentation, such as POS tagging.

Given the volume of the data, it would be advantageous to
make the segmentation learner work incrementally on a stream of
documents. Most previous work assumes a static, though large,
corpus. Nevertheless, a continuous stream of new documents al-
lows more accurate segmentation to be created over time. Also,
if an unsupervised segmentation learner works on a continuous
stream of documents, it has the benefit that it can be extended
to continuously find new lexical entries. This is especially im-
portant in Chinese, since most new words permit alternate seg-
mentations using tokens already in the corpus. Only additional
statistical information, especially on new documents which might
have a "burst” of a new word, can help identify new words.

There are other types of unsupervised learning from a corpus,
especially once there is a reliable segmentation for the corpus. For
example, clustering tokens based on their neighbors can bootstrap
an assignment of POS tags to tokens in a lexicon. Clustering
can also be used to group documents based on similar bags of
words. However, since the lexical data is sparse, some clustering
algorithms may not be optimal. In fact, since Zipf’s law holds for
even the largest of corpora, we are assured of continued sparseness.

As the corpus grows, we gain increased accuracy at the cost of
being forced to process ever larger amounts of information. This
makes it necessary to tune learning algorithms to use large corpora.
The most common way to do this is to implement learning that

44

Thomas Emerson and John O’Neil

increases the precision at the expense of recall (Pasca 2004). As
the corpus grows larger, it matters less what might be missed, since
it will be seen again and again, but it becomes more important to
avoid learning the noise and choking on the collected corpus data.

2 Problem statement

Crawling and post-processing large amounts of Chinese-language
data are the first steps in a system designed to perform nearly
continuous lexical development. The ultimate goal of the project
is to develop an environment for finding and tagging possible ne-
ologisms in text from all Chinese-speaking communities for hu-
man adjudication before inclusion in a lexicon. This is similar to
the ongoing LIVAC (Linguistic Variation in Chinese Communities)
project at the City University of Hong Kong (T’sou et al. 1997).
Unlike LIVAC, which focuses on news sources, we are interested
in casting as wide a net as possible to include data from numerous
registers and language levels.

We are also interested in utilizing the data we collect for other
non-lexicographic purposes, such as the construction of POS tagged
and entity tagged corpora for other high-level NLP tasks. These
activities are currently secondary to the primary goal of lexicon
construction.

Given the usage requirements, the following desiderata are ap-
parent:

1. A Web crawler capable of processing millions or tens of mil-
lions of URIs (Uniform Resource Identifiers): a crawl will
start with a seed set of several thousand URIs and will dis-
cover thousands more as it progresses.

2. The crawler must be polite to the sites being crawled, while
optimizing throughput. This means obeying a site’s robot-

45

WaCky!

exclusion preferences and not fetching documents from the
site multiple times per second.

3. We are only interested in textual information, so we want to
avoid downloading images, sounds, movies, and other arbi-
trary binary content: this is both a waste of bandwidth and
storage. Ideally we would only download Chinese language
content.

4. We do not want to wait for the crawl to complete before
starting to process the data: this will become more impor-
tant as the amount of stored text increases.

5. We want to be able to regularly recrawl sites that are known
to change on a regular basis: online news sites and personal
Web logs (blogs) are two obvious examples.

Writing a robust Web crawler from scratch would be an inter-
esting project, and doing so may be a feasible solution for building
small corpora. There are source code libraries available that pro-
vide HTTP protocol support and that can extract outgoing links
from HTML, and these can be used in any number of program-
ming languages including Python, Perl, and C/C++. Indeed, for
a small enough collection just using a text-mode browser like 1ynx
may be sufficient. However, for crawls on the scale we foresee the
thought of having to maintain and extend the crawler was unap-
pealing.

There are some open-source, command-line based downloading
tools, such as wget! which can be used for downloading content,
and even for mirroring entire sites. However, it has often been
misused to the point that many sites’ robots.txt file blocks all
access from it. wget is also not designed to be a crawler and not
suited for large ongoing crawls. We experimented with a modified

"http://www.gnu.org/software/wget/wget .html

46

Thomas Emerson and John O’Neil

version of wget for website archiving and link analysis but found
that more time was spent inside the code than was spent on the
real task. This is not to say that wget is poorly written, rather it
simply did not serve our exact needs.

Ubicrawler (Boldi et al. 2004) has many of the features we
could hope for, based on the above desiderata. However, it is not
publicly available and we were wary of using software whose source
we did not have ready access to.

Heritrix (Mohr et al. 2004) came to our attention when it was
first announced in January 2004. We began using it for small fo-
cused crawls starting in May 2004, contributing bug fixes and new
functionality to better serve our (and hopefully other linguistic re-
searchers’) needs. We quickly gathered experience with the code
base, the developers, and the architecture and found it to fit our
requirements very well.

3 Heritrix overview

Heritrix is an open-source Web crawler developed by the Internet
Archive (IA).2 Development of the crawler began at the beginning
of 2003 after they determined that it would be beneficial for them
to perform crawls internally. The crawler is written in Java, is
modular, multi-threaded, and is capable of handling large crawls:
the National University of Iceland has used it to crawl the entire
.is domain (11,000 domains, 35 million URIs).3

There are three primary interacting components in Heritrix:
the Scope, the Frontier, and the Processor chains.

The Scope determines whether or not a discovered URI should
be included in the crawl, without actually fetching the data pointed
to. Scopes can limit URIs to certain domains or sub-domains. A
scope can use arbitrarily complex regular expressions to make the

2http://crawler.archive.org/
3http://groups.yahoo.com/group/archive-crawler/message/1385

47

WaCky!

decision, and can reject files that are more than a certain number
of links from a seed URI. Users can also develop their own scopes
in Java if the built-in modules are inappropriate for a particular
application.

The Frontier maintains the internal state of the crawl. It keeps
track of which URIs have already been fetched, which are sched-
uled to be downloaded (i.e., that have been declared in scope),
and which are currently being processed. It is responsible for de-
termining which URI should be fetched next, paying attention to
limitations set by a site’s robots.txt file and to other forms of
“politeness”.

The Processor chains contain modules that operate over the
URIs (and associated data, once it is fetched) to perform actions
ranging from URI normalization to filtering based on length or
headers to writing the fetched data to disk and providing crawl
status information. Much of Heritrix’s power lies in the configura-
bility of these processor chains. All of the processors, as well as
the scopes and frontiers, are extremely configurable.

Items downloaded by Heritrix are stored in an "ARC” (Web
archive) file,* along with associated metadata, including the orig-
inal URI, time stamp of when it was downloaded, MIME header,
length, and fingerprint. By default each ARC file contains up to
100 MB of compressed data: during the crawl Heritrix maintains a
pool of open ARC files (signified on disk by the ".open” extension
on their file name) into which content is written by the crawler as
it is processed. When an ARC file is full, the .open extension is
removed and that ARC file is “complete”: it will not be touched by
the crawler again. This makes it possible to work with a crawl’s
ARC while the crawl continues to run — it can be moved to more
permanent storage or its contents processed immediately.

Heritrix was designed for synchronic archiving and does not

“The format for ARC files is available at http://www.archive.org/Web/
researcher/ArcFileFormat.php

48

Thomas Emerson and John O’Neil

support incremental crawling: an incremental crawler will refetch
pages on a regular basis and update the stored copy with the
updated version if it is different. Nevertheless, the ability to revisit
sites was added to Heritrix (Sigurdsson 2005). At the time of
writing, we have not had an opportunity to evaluate this addition.

The crawler has a Web-based user interface (WUI) that allows
you to setup and monitor crawl jobs. You can define profiles with
common settings that can be reused. These are stored on disk
in XML and can be edited (or created) outside of the UL You
have full control of every aspect of the crawl operation from this
console. Recent versions of the software have added a JMX (Java
Management Extensions) interface, allowing it to be controlled
from any JMX-enabled application or device.

Heritrix has an active developer community. The core team
at the Internet Archive is supplemented by a number of people
from around the world in both industry and academia, including
linguists, digital librarians, and computer scientists. Further, they
have worked with the Ubicrawler developers to incorporate some
of their code.

3.1 Heritrix vs. desiderata

Successive generations of Heritrix have become increasingly capa-
ble in performing large crawls. While the Icelandic crawl men-
tioned in the previous section was done over 4 separate crawl jobs,
it is believed that the entire 35 million URI snapshot could be
done with a single crawl job. This is more than sufficient for our
first requirement.

The default configuration for the crawler is to look for and
obey a site’s robots.txt file: this is an inviolate prerequisite that
the users need to go out of their way to circumvent. There are
numerous configurable settings for throttling the frequency with
which documents are fetched from a given server. For example,
you can set the delay between successive requests as a function of

49

WaCky!

the round-trip time of the last request made to a server. The fron-
tier can also be configured with different scheduling mechanisms
for handing off URIs to the worker (or toe, in Heritrix parlance)
threads. Therefore only through operator error (or malice) will
the crawler be impolite.

Given that one of the express design goals of Heritrix is to
archive the Web, it is no surprise that in its default configuration it
will attempt to fetch everything it can (assuming it isn’t prevented
by the robots.txt, of course.) However, through the use of the
existing filtering mechanism offered by the architecture, one can
almost eliminate all unwanted data from the crawl.

Content fetched from the Web is written into ARC files, which
are closed after they reach around 100 MB in size. From that point
Heritrix is done with them and they are available for processing:
one can develop a work-flow that starts operating on the data
while the rest of the crawl continues on.

Incremental crawling is the only desideratum that the current
release of the crawler lacks, though Sigurdsson’s (2005) work looks
promising. For our current needs incrementality is not essential:
we can just start new crawls based on the previous ones, relying
on post-processing to remove duplicate documents.

4 Practical crawling issues

4.1 Seed generation

Our goal is to collect as much text as possible: rather than looking
for specific linguistic constructs we need vast amounts of text to
mine for neologisms. To this end we needed some way to find
thousands of URIs with which to seed our crawls.

The Open Directory Project (ODP)? claims to be, “the largest,
most comprehensive human-edited directory of the Web.” Hun-

®http://dmoz.org

50

Thomas Emerson and John O’Neil

dreds of volunteers world-wide categorize millions of URIs accord-
ing to defined criteria. All of the ODP data is freely available under
the Open Directory License, which allows unlimited research and
commercial use of the data as long as appropriate attributions are
made and the rights outlined in the license are not impinged by
subsequent distribution. Snapshots of the ODP database are made
in slightly modified RDF every month or so: the release dated 28
July 2005 was 210 MB compressed and 1 GB uncompressed, con-
taining some 4.5 million URIs in 551,578 categories.

The classification scheme used by the ODP includes regional
and language-specific categories. For example, the category

Top:World:Chinese Simplified

contains pages that are known to be in Simplified Chinese.
There are 1,993 sub-categories of this, counting for 16,535 URIs.
The upshot of this is that it is trivial to extract all URIs in this
category from the RDF file.

The ODP data is processed by extracting the categories and
associated URIs from the RDF into a simple two-column tab-
delimited file containing just the category and the URI. This re-
duces the size of the ODP database by almost 50% by eliminating
the XML markup and removing unused information. This only
has to be done once for each release of the data. After this file is
created, it is trivial to extract just the links matching a particular
category using grep and cut:

% grep Top/World/Chinese_Simplified ext.ut8 |
cut -f 2 > zh_sc_uris.txt

A simple Python script is then used to generate a random
sample of the extracted URIs:

% python pick_random.py 1500 zh_sc_uris.txt > seeds.txt

The resulting seeds.txt can now be used in a Heritrix job
specification.

o1

WaCky!

4.2 Job configuration

For lexicon construction we are only interested in HTML docu-
ments. Other document types, such as PDF or Microsoft Word,
require more extensive processing than we chose to deal with. The
first approximation for this is to exclude URIs from the scope with
file extensions we do not care about. This can be done with a
URIRegExpFilter with a long regular expression similar to:

*(71)\. (gif |pdf |wav|dvilpsliso)$

The expression that we actually use is considerably larger, con-
taining 176 extensions. There are two file extensions that could
not be included in the filter, au and txt. The au cannot be ex-
cluded because this would cause sites in Australia (whose ISO 3166
code is also au) to be excluded from the scope in some situations,
and txt was kept because its omission would cause robots.txt
to be excluded, violating the hard prerequisite Heritrix has for
handling the robot exclusion protocol.

Unfortunately filtering just on file extension does not exclude
all content: very often URIs that yield images or PDF's are gen-
erated from CGI scripts or other dynamic methods and lack a file
extension. To account for these cases, we install a ContentType
RegExpFilter as a MidFetch filter (run after the HTTP response
headers are received but before the content) to filter on the content

type:
(?i)text/html.*

There are two other options that need to be set for each job.
The first is default-encoding, which is the character encoding
that is used for files that do not explicitly declare one. When work-
ing with multi-byte character sets it is important that Heritrix

Shttp://www.dreamersrealm.net/ tree/blog/7p=4

92

Thomas Emerson and John O’Neil

know what encodings it is likely to see. Failure to set this appro-
priately can result in broken link extraction. The second is to add
an appropriate Accept-Language header to the accept-headers.
Some sites do content negotiation to send appropriately trans-
lated content to the browser. Without explicitly specifying the
Accept-Language you may not receive the content you expect.
For Simplified Chinese sites it is best to set the default encoding
to CP936 (Microsoft’s Simplified Chinese code page) and add:

Accept-Language: zh-cn, zh-sg

For Traditional Chinese sites, the default encoding is CP950
(Microsoft’s Traditional Chinese code page) and the accept header:

Accept-Language: zh-tw, zh-hk

5 Crawl experiences

Using the methods described in the previous section we generated
a random set of 1,500 Simplified Chinese URIs from the May 2005
ODP data release. A sample of the 16,000 URIs available in the
ODP Simplified Chinese section were used to constrain the size of
this crawl. We ran a local pre-release build of Heritrix 1.4.0 on an
old dual-CPU 666 MHz x86 machine with 1 GB physical memory
and running Gentoo Linux 2005.1 with Sun’s JDK 1.4.2. This
machine was dedicated to the crawl. We gave the Java virtual
machine a 512 MB heap and this was sufficient for the crawl.
The crawler was initially configured to use 50 threads (i.e.,
fifty concurrent connections). This was increased every other day
until we reached 150 threads. We elected to use the “Domain”
scope, which allows any URI in the domain of one of the seeds
to be crawled. A depth restriction (number of hops from a seed)
of 25 was used. We let the crawl run for approximately 11 days
before manually stopping it due to a lack of disk space. When

93

WaCky!

URISs stored: 7,372,351
ARC files: 300
Total ARC File Size: 28 GB
Unique Hosts Crawled: 4,032
Total HTML size: 109.7 GB
Total Stripped size: 15.8 GB
Languages found: 28

Table 1. Statistics on the first large Chinese crawl

Simplified Chinese 5,510,748 || Romanian 52
Traditional Chinese 50,030 || Persian 38
Russian 5,986 || Hungarian 32
Japanese 4,059 || Finnish 28
Korean 393 || Bulgarian 26
Arabic 365 || Spanish 11
Polish 198 || Albanian 11
Greek 136 || Vietnamese 10
Thai 120 || Swedish 8
Turkish 83 || Latvian 5
Czech 67 || German 5
Portuguese 65 || Icelandic 3
Hebrew 58 || Slovak 2
Lithuanian 55 || French 1

Table 2. Breakdown of languages found in the first large Chinese crawl

the crawler was shutdown it had stored 7,372,351 URIs, or ap-
proximately 27,926 per hour, or around 8 documents per second.
Further statistics on the crawl can be found in tables 1 and 2.

5.1 Disk issues

The gating factor on the length of this crawl was disk space: the
crawl had been running for almost two weeks until running out of
disk space due in large part to the amount of “state” data that was
being stored: it dwarfed the amount of data stored in the ARC

o4

Thomas Emerson and John O’Neil

files (48 GB to 28 GB). This saved state data is only needed during
the crawl: once the crawl is terminated the state information can
be deleted. It appears that the ratio of state to “content” is highly
dependent on the type of content being stored: our use of Heritrix
to only download textual data is somewhat unique. The IA has
observed that for archival crawls the state is only around 15% of
the ARC file size.” The Heritrix developers were subsequently able
to implement some size reduction on the data stored in the state
files, though we have not had an opportunity to study the effects
of this change in our crawls.

During a crawl “disk contention” can become a performance
bottleneck too:

e The crawler keeps a pool of ARC writers, which the threads
use to write the content they are downloading. Each of
these contends for the disk. Interestingly enough, the TA
found that increasing the number of ARC writers does not
help performance, but can actually lower it. The ratio-
nale is that increasing the number of writers increases the
amount of contention for the disk, which ends up being a
more time-consuming operation than keeping threads wait-
ing for a writer.

e The crawler maintains at least four log files during the crawl,
so there is contention for writing (and, for the administrative
interface, reading) these.

e The state data. As observed with the current crawl, there
is a lot of this: not only does it consume disk space, it can
result in disk contention during the crawl.

Heritrix allows you to split the ARCs, logs, and state across
different physical disks. This can go a long way to reducing con-

"http://groups.yahoo.com/group/archive-crawler/message/1870

95

WaCky!

tention on a single disk, and is the recommended way of dealing
with this.

Based on our experience with the Chinese crawl, we need to
allocate about 150% of the space taken by the expected crawled
data size for state information. This storage is only needed during
the crawl, and can be reclaimed when it completes. This becomes
a real problem if we run multiple large-scale crawls on a single
machine where you could expect to use 50-150 GB of disk space,
per crawl, for the state information.

6 Post processing

For vocabulary acquisition we need to extract the raw text from
the Chinese documents stored in the ARC files. This processing
was done after the crawl was completed, but it could be done
incrementally as the ARC files are closed: the steps are repeated
for each ARC.

Post-processing is done in two phases: we first extract all inter-
esting documents from the ARC files, and then lift the text from
the HTML.

The first phase works as follows: each text/html item in
the ARC file has its HTML markup stripped. If the amount of
text left after removing markup is greater than a threshold (1024
bytes) then we perform language and encoding detection using
Basis Technology’s Rosette Language Identifier, a commercial lan-
guage/encoding detection system. With the 1024 byte threshold
the identifier is almost 100% accurate. Documents that are de-
tected to be Simplified Chinese (regardless of character encoding)
are then marked for further processing.

Items that reach this stage are extracted from the ARC file
in the original HTML, except that they are transcoded from the
detected character encoding to UTF-8 with HTML character en-
tities expanded. These are written to disk into numbered files

56

Thomas Emerson and John O’Neil

contained in numbered directories, with at most 1,000 files per
directory. This is done since few file systems are capable of work-
ing reliably with directories containing tens of thousands (if not
millions) of files. Note that we do not rewrite any character set
declarations that may exist in the original HTML file: these are
never used.

Once the ARC files have been processed in this way, they can
be moved to offline storage since the “interesting” content has been
extracted. Our policy is to keep the ARCs for each crawl for future
use and research.

The second post-processing phase is lifting the text from the
markup. For some purposes (though not necessarily lexicon ex-
traction) it is useful to have the rough physical structure of the
text preserved, and many utilities which merely remove markup
do not preserve this. We envision “sifting away” the markup and
leaving the text in place, with structure preserved. To do this we
use an open source tool called vilistextum® which is robust in
the face of “broken” markup and does a decent job of preserving
the logical structure of the documents. Each file extracted in the
first phase is passed through Vilistextum and saved with the same
basename but different file extension. The HTML files generated
in phase 1 can then be deleted (since they can be trivially regen-
erated from the ARCs) or moved to offline storage. Table 3 gives
some statistics on the resulting text.

We do not yet perform any (near-)duplicate or boiler-plate
removal. This is an important future direction, and we are exam-
ining various techniques to do this. Most existing duplicate doc-
ument detection algorithms presume efficient tokenization of the
input documents, which we do not have in the case of Chinese.
This is a problem that we will need to tackle in the near term,
since duplicate documents will artificially inflate the statistics we
use to find new words in the texts.

®http://bhaak.dyndns.org/vilistextum/

o7

WaCky!

Number of files: 3,291,985
Average file size: 4,935 bytes
Total hanzi: 3,861,758,249

Table 3. Statistics on the Simplified Chinese text

7 Data management

7.1 Crawl data

Data management becomes a significant issue as the size of the
crawls increases.

Given that the content we store is almost exclusively textual
the compression ratios are quite good (17:1). However, a large
crawl still generates a lot of data that needs to be stored and
backed up.

The raw data that is crawled is not immediately useful for
many of our tasks, so it must be post processed. This raises sev-
eral issues, including: when is the processing performed? Is the
processed data saved, or do we always process on demand? How
do we deal with the duplicate and near-duplicate data problem?
How do we extract the data we’re interested in from the huge
amount available? Again, compression can be used to help with
disk space issues. Do we want (or need) to be able to map back
from processed data to the original ARC file and to a specific
crawl?

We have no way of knowing how much data is available for
a particular set of parameters (e.g., language, encoding, content
type).

Backups and data integrity are difficult; backing up 28 GB of
ARC files requires at least 7 DVD-R discs. One solution is to
use one or more external FireWire drives to archive the data after
it is crawled. Unfortunately this single-point of failure caused us
to earlier loose about 100 GB of data when the file system on

58

Thomas Emerson and John O’Neil

the external drive became corrupted and unrepairable. This may
have been an issue with the FireWire drivers on Gentoo, or an
issue with the ext3 file system, or a combination of these.

7.2 Processed data

The data from each physical URI is stored in a single file after
all processing is complete. It is possible to work backwards from
the file name to the ARC file containing the original HTML. This
means, however, that there are hundreds of thousands of files liv-
ing on the file system, which is obviously problematic for many
reasons.

Initially we generated a bzip2 compressed tar file containing
the extracted data. We do much of our linguistic processing in
the Python language, which has the ability to read the entries of
these archives. Unfortunately this didn’t work since Python was
unable to process files over 4 GB in size (a bug which has since
been fixed).

Another large collection, the LDC’s Chinese Gigaword (Graff
et al. 2005)Y contains 349 compressed SGML files which in turn
contain multiple news articles along with other markup. We could
concatenate multiple files into one, and compress this, but doing
so involves the addition of extra markup that we do not want to
add.

8 Conclusion

Since the crawl documented here, we have performed a second
Simplified Chinese and a first Traditional Chinese crawl of similar
size. We have not yet started lexicon extraction on any of these
corpora, although this will proceed in the near future.

9This corpus contains approximately 1.3 billion characters, slightly less than
one-third the size of the crawl described here.

99

WaCky!

Heritrix has worked very well for the tasks we have given it.
Nine times out of ten the problems we’ve encountered have been
of our own doing, and the responsive development team have been
quick to point out our errors or to correct problems that we have
encountered. The software continues to improve, and the archi-
tecture is proving itself again and again. The addition of the JMX
interface is particularly exciting, as we can envision integrating
the crawler into a Web-based lexicographer’s workbench.

The biggest concerns are generally pragmatic: finding enough
disk space to actually store the crawl data and associated tran-
sient state; sharing bandwidth with the rest of the company; post-
processing the collected data. These are problems that any large-
scale crawling effort will encounter.

Our next steps involve integrating the crawler and its data into
the linguistic processing modules of the system, and making the
crawls incremental so that we can continue to expand our lexica as
time goes on. We are also expanding our crawling efforts into other
languages, and looking at ways of expanding Heritrix to perform
directed crawls of specific languages for which readily available
corpora of any size do not exist (Ghani et al. 2001).

Acknowledgments

The authors would like to thank Michael Stack of the Internet
Archive for his comments on the section describing Heritrix. The
work reported in this article was conducted while Thomas Emerson
worked at Basis Technology.

References
Baayen, R. (2001). Word frequency distributions, Berlin: Springer.

Boldi, P., Codenotti, B., Santini, M. and Vigna, S. (2004). Ub-

60

Thomas Emerson and John O’Neil

icrawler: A scalable fully distributed Web crawler. Software:
Practice & Experience 34(8), 711-726.

Chang, J. and Su, K. (1997). An unsupervised iterative method
for Chinese new lexicon extraction. Computational Linguistics
and Chinese Language Processing 2(2), 97-148.

Gao, J., Li, M., Wu, A. and Huang, C. (2004). Chinese word
segmentation: A pragmatic approach. Technical Report MSR-
TR-2004-123, Microsoft Research.

Ge, X., Pratt, W. and Smyth, P. (1999). Discovering Chinese
words from unsegmented text. Proceedings of the 22nd Interna-
tional SIGIR Conference, 271-272.

Ghani, R., Jones, R. and Mladenié¢, D. (2001). Mining the Web
to create minority language corpora. Proceedings of the 10th
International Conference on Information and Knowledge Man-
agement, 279-286.

Graff, D., Chen, K., Kong, J. and Maeda, K. (2005). Chinese Giga-
word, second edition. Lexical Data Consortium, LDC2005T14.

Jin, H. and Wong, K. (2002). A Chinese dictionary construction
algorithm for information retrieval. ACM Transactions on Asian
Language Information Processing 1(4), 281-296.

Kilgarriff, A. and Grefenstette, G. (2003). Introduction to the
special issue on the Web as corpus. Computational Linguistics
29(3), 332-347.

Lin, Y. and Yu, M. (2004). The properties and further appli-
cations of Chinese frequent strings. Computational Linguistics
and Chinese Language Processing 9(1), 113-128

Mohr, G., Kimpton, M., Stack, M. Ranitovic, I. (2004). Introduc-
tion to Heritrix, an archival quality Web crawler. Proceedings
of the 4th International Web Archiving Workshop.

61

WaCky!

Pasca, M. (2004). Acquisition of categorized named entities for
Web search. Proceedings of the Thirteenth ACM Conference on
Information and Knowledge Management (CIKM 04), 137-145.

Sigurdsson, K. (2005). Adaptive revisiting in Heritrix. Master’s
thesis, University of Iceland.

Sproat, R. and Emerson, T. (2003). The first international Chinese
word segmentation bakeoff. Proceedings of the Second SIGHAN
Workshop on Chinese Language Processing.

Sproat, R., Shih, C., Gale, W. and Chang, N. (1994). A stochastic
finite-state word-segmentation algorithm for Chinese. Proceed-
ings of the 32nd Annual Meeting of the Association for Compu-
tational Linguistics, 66-73.

Sun, M., Shen, D. and T’sou, B. (1998). Chinese word segmen-
tation without using lexicon and hand-crafted training data.
Proceedings of COLING-ACL 98, 1265-1271.

T’sou, B., Lin, H., Liu, G., Chan, T., Hu, J., Chew, C. and Tse,
J. (1997). A synchronous Chinese language corpus from differ-
ent speech communities: Construction and applications. Com-

putational Linguistics and Chinese Language Processing 2(1),
91-104.

Wu, A. (2003). Customizable segmentation of morphologically de-
rived words in Chinese. Computational Linguistics and Chinese
Language Processing 8(1), 1-28.

62

