
A WaCky Introduction

Silvia Bernardini, Marco Baroni and Stefan Evert

1 The corpus and the Web

We use the Web today for a myriad purposes, from buying a plane
ticket to browsing an ancient manuscript, from looking up a recipe
to watching a TV program. And more. Besides these “proper”
uses, there are also less obvious, more indirect ways of exploiting
the potential of the Web. For language researchers, the Web is also
an enormous collection of (mainly) textual materials which make
it possible, for the first time ever, to study innumerable instances
of language performance, produced by different individuals in a
variety of settings for a host of purposes.

One of the tenets of corpus linguistics is the requirement to ob-
serve language as it is produced in authentic settings, for authen-
tic purposes, by speakers and writers whose aim is not to display
their language competence, but rather to achieve some objective
through language. To study “purposeful language behavior”, cor-
pus linguists require collections of authentic texts (spoken and/or
written). It is therefore not surprising that many (corpus) linguists
have recently turned to the World Wide Web as the richest and
most easily accessible source of language material available. At
the same time, for language technologists, who have been arguing
for long that “more data is better data”, the WWW is a virtu-
ally unlimited source of “more data”. The potential uses to which
the Web has been (or can be) put within the field of language
studies are numerous and varied, from checking word frequencies
using Google counts to constructing general or specialized corpora

9



WaCky!

of Web-published texts. The expression “Web as corpus” is nowa-
days often used to refer to these different ways of exploiting the
WWW for language studies.

In what follows we briefly consider four different ways of us-
ing the Web as a corpus, focusing particularly on those taking
the lion share of this volume of working papers: the Web as a
“corpus shop”, and the “mega-corpus/mini-Web” as a new object.
The latter in particular will be described in some detail, and spe-
cial attention will be paid to the design of this resource and the
challenges posed by its development.

2 Web as Corpus (WaC): four senses

There is currently no unified understanding of the expression Web
as corpus. We have identified four separate senses, though there
are probably others:

1. The Web as a corpus surrogate

2. The Web as a corpus shop

3. The Web as corpus proper

4. The mega-corpus/mini-Web

Researchers (and users in general) using the Web as a corpus
surrogate turn to it via a standard commercial search engine for
opportunistic reasons. They would probably use a corpus, pos-
sibly through corpus analysis software, but none exists for their
purposes (e.g., because available corpora are too small), or they
do not have access to one, or they do not know what a corpus is.
The translator trainees at the School for Interpreters and Trans-
lators, University of Bologna (Italy), for instance, use the Web
as a reference tool in their translation tasks, though the search

10



Silvia Bernardini, Marco Baroni and Stefan Evert

is often time consuming, the relevance and authoritativeness of
the solutions found is hard to assess, and the observation of re-
current patterns very difficult. It would make sense for them to
use a corpus, if one existed as large as the Web, and if they knew
how to use it.1 Similarly, researchers who rely on Google-like
hit counts for their studies (e.g., Chklovski and Pantel 2004) live
with the brittleness2 and reduced flexibility of the search engine,
though they would no doubt prefer a more stable resource, al-
lowing replication and providing facilities for more sophisticated
queries. Linguist-oriented meta-search engines like KWiCFinder3

and WebCorp4 wrap around the standard output of Web search
engines some of the features and facilities of corpus search engines
(e.g., the KWIC format, a collocation tool, and so forth). Though
this solution leaves questions linked to the datasets and retrieval
strategies untouched, users can to some extent pretend to be con-
sulting the Web in a corpus-like environment.

Others using the Web as a corpus treat it as a corpus shop.
They query a traditional search engine for combinations of search
words, taking advantage of the facilities offered by the engine (e.g.,
selection of language, provenance, URL-type etc.) to focus their
queries. They (select and) download the texts retrieved by the
engine, thus creating a corpus in the traditional sense of the term.
This procedure, which can be automatized to various degrees, is
adopted by those who require specialized corpora, e.g., for trans-
lation, terminology or text analysis purposes. Several researchers
have discussed the didactic advantages of “disposable” corpora
(e.g., Varantola 2003) in the teaching of foreign languages and
translation skills. Castagnoli (this volume) describes a classroom

1Unless stated otherwise, by “Web” and “corpus” we refer to both the text
materials and the search engines used to index and search them.

2http://aixtal.blogspot.com/2005/02/web-googles-missing-pages-
mystery.html

3http://miniappolis.com/KWiCFinder/KWiCFinderHome.html
4http://www.webcorp.org.uk/

11



WaCky!

experience where learners a) use the BootCaT toolkit (Baroni and
Bernardini 2004), a set of Unix tools, to construct corpora from
specialized domains in a semi-automated way, b) evaluate the cor-
pora and c) use them to investigate terminology and retrieve typ-
ical instances of usage in context. Castagnoli suggests that the
limits of this automatic procedure can be turned into advantages
in a pedagogic context, where learners can be made to reflect on
their text selection strategies and documentation skills. The de-
velopment of a Web interface for the BootCaT tools (Baroni et
al. 2006) should remove the technical hurdles for less computer-
literate users and favor a more widespread use in the classroom
and among language professionals.

Fantinuoli (this volume), Sharoff (this volume) and Ueyama
(this volume) also use the BootCaT tools, but take a more descrip-
tively oriented perspective. Their aim is an evaluation of corpora
constructed semi-automatically from the Web. While Fantinuoli
(like Castagnoli) focuses on the construction of specialized corpora
for language professionals, Sharoff uses this methodology to build
general language corpora of Chinese, English, German and Rus-
sian, and Ueyama of Japanese. These authors focus on different
ways of evaluating their products: the comparison between man-
ually and automatically constructed corpora and manually and
automatically extracted terms in the case of Fantinuoli, the qual-
itative and quantitative observation of topics, genres and lexical
items in Web corpora built in different ways in Ueyama, and the
comparison of word frequency lists derived from the Web and from
traditional corpora in Sharoff. These articles contribute to the es-
tablishment of good practices and open the way to the empirical
study of a set of still under-investigated questions such as: In what
ways can we say that traditional corpora differ from Web-derived
corpora? How does the corpus construction methodology affect
the nature of the resulting corpus?

12



Silvia Bernardini, Marco Baroni and Stefan Evert

So far we have been concerned with ways of using the Web op-
portunistically, to derive generalizations about (subsets of) a lan-
guage either directly through search engine queries or indirectly
through the downloading of Web published texts. For these pur-
poses paper texts would equally be appropriate, if not for the
obstacle of digitizing them. Our third possible meaning of the
notion of Web as corpus, the “Web as corpus proper”, is different
inasmuch as it purports to investigate the nature of the Web. In
the same way as the British National Corpus aims to represent the
whole of British English at a given point in time, it is possible to
envisage a corpus that represents Web English at a given point in
time.5 This research paradigm could tell us something about the
language used on the Web (glimpses of this are provided in this
volume by Ueyama and Sharoff). Clearly, extensive discussion and
experimentation is needed to develop criteria for Web sampling.
Input might come from taxonomy-oriented surveys (along the lines
of the article by Mehler and Gleim in this volume). We expect this
area of research to feature prominently in WaC linguistics in the
next few years.

Lastly, our fourth and most radical way of understanding the
expression Web as a corpus refers to attempts to create a new
object, a sort of mini-Web (or mega-corpus) adapted to language
research. This object would possess both Web-derived and corpus-
derived features. Like the Web, it would be very large, (relatively)
up-to-date, it would contain text material from crawled Web sites

5One could argue that this sense of Web as corpus is somewhat different
from those discussed so far (and indeed from the one discussed below). After
all, the corpus surrogate and the corpus shop approaches are different ways of
using Web data for similar purposes (to investigate linguistic issues), whereas
in the WaC proper approach the purposes of the investigation differ (i.e., we
are trying to learn about the Web, rather than using the Web to learn about
language). We include this sense here anyway because the aim is simply telling
different understandings of the expression apart, rather than providing a con-
sistent classification.

13



WaCky!

and it would provide a fast Web-based interface to access the data.
Like a corpus, it would be annotated (e.g., with POS and lemma
information), it would allow sophisticated queries, and would be
(relatively) stable. Both people wanting to investigate aspects
of language through the Web, and people wanting to investigate
aspects of the Web through language could profit from this corpus.

We are convinced that this is a valuable research project be-
cause it answers a widely-felt need in our community of (computa-
tional) linguists, language and translation teachers and language
professionals for a resource that combines the reliability and the
flexibility of corpora and their search tools with the size, variety
and timeliness of the Web. The chances that commercial Web
search engines be interested in such a research agenda are very
low, and relying on the less standard facilities they offer may not
be a good idea in the long run.6

Besides being valuable, we believe that this is also a feasible,
though challenging, endeavor. The present authors and several
contributors to this volume are currently involved in the piloting
of very large Web-derived corpora in English, German and Ital-
ian, in a project (started at the end of 2004) that emphasizes the
development and sharing of open tools and resources. A series
of workshops have been organized which have provided a public
discussion space (the Web as corpus workshop in Forl̀ı, January
14, 2005; the Web as corpus workshop at CL05 in Birmingham,
July 14, 2005; and the Web as corpus workshop at EACL, Trento,
April 3, 2006). Discussion is constantly taking place also through
the project wiki, the so-called WaCky wiki.7 Many WaCky con-
tributors are actively involved in the recently established Special
Interest Group on Web as Corpus (SIGWAC) of the Association for

6AltaVista discontinued the NEAR operator in 2004. The Google API keys
(on which the BootCaT tools currently rely) have provided very discontinuous
functionality during tests carried out in the last few months of 2005 and in
early 2006.

7http://wacky.sslmit.unibo.it/

14



Silvia Bernardini, Marco Baroni and Stefan Evert

Computational Linguistics (ACL).8 At the same time, infrastruc-
ture building has also started in Forl̀ı, with the aim to secure the
minimum technical prerequisites to begin the piloting phase. Two
mega corpora are at an advanced stage of development (deWaC
and itWaC, for the German and Italian languages, respectively:
Baroni and Kilgarriff 2006; Baroni and Ueyama 2006), the con-
struction of other corpora is under way for other languages (En-
glish, Chinese and Russian), and more funds to proceed with the
project are being sought.

Among the papers in this collection, the one by Emerson and
O’Neil presents in detail the first steps of data collection for the
purposes of building a mega corpus of Chinese. There are two main
sides that are relevant to the construction of a mega corpus/mini-
Web. First, one has to retrieve, process and annotate Web data.
Second, one has to index these data, and construct an interface to
allow prospective users to access the data. In the next two sec-
tions, we will present our ideas about both aspects of the process,
relying on our experiences with deWaC and itWaC and on the
work reported in the remainder of this volume.

3 Constructing Web corpora

The basic steps to construct a Web corpus are:

1. Select the “seed” URLs

2. Retrieve pages by crawling

3. Clean up the data

4. Annotate the data

We discuss each of these in turn.
8http://www.sigwac.org.uk/

15



WaCky!

3.1 Selecting seed URLs

The crawl has to start from a set of seed URLs. For special-
purpose corpora, it is relatively straightforward to decide the seeds
(e.g., if one wants to build a corpus of blogs, one can select a ran-
dom set of blog URLs from one or more blog servers). For a
general-purpose corpus, one would ideally want to draw a random
sample of pages that are representative of the target language. As
discussed in the article by Ciaramita and Baroni, this is not the
same as drawing a random sample of webpages. For example, sup-
pose that the Italian Web is composed of a 90% of pornographic
pages, 9% of Linux howtos, and that all other text types together
make up just 1% of the whole. For the purpose of building a cor-
pus, we would probably prefer a sampling method heavily biased
in favor of selecting from this 1%, rather than a true random sam-
ple that would lead to a corpus of mostly pornography plus the
occasional bash shell guide. The fact that the notion of “represen-
tativeness” of a corpus (and how to measure it) is far from well-
understood (Kilgarriff and Grefenstette 2003) complicates matters
further. Ciaramita and Baroni propose a measure of “unbiased-
ness”of a Web-derived corpus based on the comparison of the word
frequency distribution of the target corpus to those of deliberately
biased corpora.

Both Sharoff and Ueyama select seed URLs by issuing (auto-
mated) queries for random content word combinations to Google,
and retrieving the URL lists returned by the engine. The qualita-
tive evaluation carried out by Sharoff suggests that the variety (in
terms of parameters such as genre and domain) of the collections of
documents corresponding to these URLs is closer to what we would
expect from a balanced corpus than to what we find in biased col-
lections, such as newswire corpora. An important aspect of this
methodology is how the words used in the queries are selected.
Ueyama’s experiments suggest that selecting words from tradi-
tional corpora might bias the queries towards pages containing

16



Silvia Bernardini, Marco Baroni and Stefan Evert

higher register prose and “public life” domains, thus missing some
of the most interesting linguistic material available on the Web
– non-professionally written, informal prose on everyday topics.
Pages of this sort can be found using words from basic vocabulary
lists. The seed URLs chosen to build the WaCky initiative German
and Italian corpora were retrieved from Google with combinations
of words extracted both from traditional newspaper corpora and
from “basic vocabulary” lists for language learners, in the hope
to tap into both higher register/public and lower register/private
sections of the Web.

Emerson and O’Neil select URLs matching their target lan-
guage (Chinese) from the Open Directory Project (ODP),9 a large,
open directory of webpages maintained by volunteers. This method
has several advantages over the former: It does not rely on a com-
mercial enterprise such as Google, and the metadata information
provided by ODP can be exploited for sampling. On the negative
side, the set of URLs listed by ODP is much smaller than the set
indexed by Google (at the moment of writing, about 5 million vs. 8
billion). Moreover, ODP seems biased in favor of top level pages,
whereas the pages retrieved by random content word queries to
Google often come from deeper layers of websites, and as such
tend to be characterized by richer textual content. Devising and
comparing seed URL selection strategies will be an important area
for future WaC research.

3.2 Crawling

If the list of seed URLs is long and/or one does not aim to build
a very large corpus, crawling can be as simple as retrieving the
documents corresponding to the seed URLs (this is what Sharoff
and Ueyama do). Otherwise, one uses the seed URLs to start a
crawl of the Web, i.e., a program is launched that retrieves pages

9http://www.dmoz.org

17



WaCky!

corresponding to the seed URLs, extracts new URLs from the links
in the retrieved pages, follows the new links to retrieve more pages,
and so on. Conceptually, crawling is a straightforward procedure;
however, only a sophisticated implementation of the procedure
will allow one to perform a successful large-scale crawl. There are
several issues that need to be addressed.

Efficiency : As more pages are retrieved, the queue of dis-
covered URLs grows very large. Thus, the crawler must be
able to manage such a large list in a memory-efficient way.

Duplicates: The crawler must make sure that only URLs
that have not been seen already are added to the list.

Politeness: Minimally, the crawler must respect the direc-
tives specified by webmasters in a site’s robots.txt file.
However, it should also avoid hammering the same site with
thousands of requests in a short time span, and provide an
easy way to contact the owner of the crawl.

Traps: The crawler should avoid “spider traps”, i.e., mali-
cious sites that try to stop it, e.g., by luring it into a loop
in which it will continue downloading dynamically generated
pages with random text forever (not a good thing for corpus
building!)

Customization: The crawler should be easy to customize
(e.g., for a linguistic crawl one might want to limit the crawl
to pages from a certain national domain, and focus on HTML
documents) and, given that a large crawl will probably take
weeks to complete, it should be possible to monitor an on-
going crawl, possibly changing parameters on the fly.

File handling : Finally, given that a large crawl will retrieve
millions of documents, the crawler should handle the re-
trieved data in an intelligent manner (on the one hand, we

18



Silvia Bernardini, Marco Baroni and Stefan Evert

would not want to have to deal with millions of output files;
on the other, a single file of a few hundreds gigabytes would
also be hard to manage).

For all these reasons, simple tools such as the Unix utility wget
are not appropriate for large-scale crawls, and programs specifi-
cally designed for such task should be used. The crawl described
in Emerson and O’Neil’s article is based on one such tools, i.e.,
Heritrix, the open-source Java crawler developed at the Internet
Archive.10 Heritrix is also employed by the WaCky project.11

3.3 Data cleaning

Once the crawl is over, we are left with a (possibly very large) set of
HTML documents,12 and we have to convert them into something
that can be used as a linguistic corpus. For many purposes, HTML
code and other non-linguistic material should be removed. Pre-
sumably, language/encoding detection and (near-)duplicate dis-
carding are desirable steps independently of the purposes of the
corpus.

An interesting side effect of WaC activities is that, because
Web data are so noisy, data cleaning must take center stage, un-
like in traditional NLP, where it has been seen as a minor pre-
processing step that is not really worth talking about (standard
introductions to NLP, such as Jurafsky and Martin 2000 and Man-
ning and Schütze 1999, do not dedicate any space to the topic). In-

10http://crawler.archive.org
11An alternative fully featured crawler is the Ubicrawler (http://ubi.imc.

pi.cnr.it/projects/ubicrawler), which, however, at the moment of writing
does not appear to be publicly distributed under a GNU-like license, and, con-
sequently, is not supported by the same kind of wide community that supports
Heritrix.

12Other formats, such as Acrobat’s PDF and Microsoft’s doc might also be
converted to text and added to the corpus. We do not discuss this possibility
here.

19



WaCky!

deed, the Special Interest Group on Web as Corpus of ACL is cur-
rently preparing a competitive data cleaning task, CLEANEVAL,
as its first public activity.13

3.3.1 HTML code removal and boilerplate stripping

Tools such as vilistextum14 (used by Emerson and O’Neil) and
the standard Unix textual browser lynx (used by Sharoff) extract
plain text from an HTML document, while attempting to pre-
serve its logical structure and the hyperlink information. This is
appropriate for certain purposes – e.g., to parse a document ac-
cording to the “graph grammar” of webpages proposed in Mehler
and Gleim’s chapter (indeed, for such purposes it might be de-
sirable to preserve the HTML code itself). Logical structure and
hyperlink information might also be useful for purposes of docu-
ment categorization. However, structural markup and links will
constitute noise for the purposes of further linguistic processing
(tokenization, POS tagging, etc.).

Equally problematic, in terms of linguistic processing and ex-
traction of linguistic information, is the presence of “boilerplate”,
i.e., the linguistically uninteresting material repeated across the
pages of a site and typically machine-generated, such as navigation
information, copyright notices, advertisement, etc. Boilerplate can
clutter KWIC displays, distort statistics and linguistic generaliza-
tions (we probably do not want“click here” to come up as the most
frequent bigram of English), and make duplicate detection harder.
Boilerplate is harder to identify than HTML/javascript, since it
is regular text, not overtly delimited code. For corpora based
on crawls of a limited number of domains, it might be possible
to analyze pages from the domains and manually develop regu-
lar expressions to spot and remove boilerplate. For larger crawls,

13http://cleaneval.sigwac.org.uk/
14http://bhaak.dyndns.org/vilistextum

20



Silvia Bernardini, Marco Baroni and Stefan Evert

domain-independent methods must be applied. For the develop-
ment of the WaCky corpora, we used HTML tag density as a fast
heuristic method to filter out boilerplate (re-implementing the al-
gorithm of the Hyppia project BTE tool).15 The idea is that the
content-rich section of a page will have a low HTML tag density,
whereas boilerplate text tends to be accompanied by a wealth of
HTML (because of special formatting, many newlines, many links,
etc.) Thus, of all possible spans of text in a document, we pick
the one for which the quantity Count(tokens)−Count(tags) takes
the highest value.

If we are interested in the Web as a source of linguistic samples,
boilerplate stripping is fundamental. If we are studying the make-
up of HTML documents and their linking structures, boilerplate
stripping might be undesirable, as it might destroy the logical
structure of a document. Optimally, a Web-based corpus should
satisfy both needs by providing access to the original, unprocessed
HTML documents as well as to a linguistically annotated version
that had code and boilerplate removed.

3.3.2 Language/encoding detection

For Western European languages, language filtering can be a sim-
ple matter of discarding documents that do not contain enough
words from a short list of function words (this is the strategy
we employed when building the German and Italian WaCky cor-
pora). For other languages, encoding detection must be performed
together with language filtering, since webpages in the same lan-
guages can come in a number of different encodings. Free tools
such as the TextCat utility16 or the proprietary tools used by
Emerson and O’Neil can perform this task. Tools such as the
recode utility17 can then convert all pages to the same encod-

15http://www.smi.ucd.ie/hyppia/
16http://odur.let.rug.nl/~vannoord/TextCat
17http://recode.progiciels-bpi.ca/

21



WaCky!

ing for further processing. Language detection will typically work
poorly if the HTML code has not been stripped off. Moreover,
if the detection algorithm relies on statistical models extracted
from training data (often, character n-grams), these training data
should not be too dissimilar from the Web data to be analyzed. For
example, when using TextCat on German Web data, we noticed
that the tool systematically failed to recognize German pages in
which nouns are not capitalized – an informal way of spelling that
is common on the Web, but virtually unattested in more standard
sources such as newspaper text. A more difficult issue is that of
dealing with pages that contain more than one language – how-
ever, given the wealth of data available from the Web, it might
be sufficient to simply discard such pages (assuming they can be
identified). Lastly, word lists can be used to identify and discard
“bad” documents in the target language (e.g., pornography and
Web-spam).

3.3.3 (Near-)duplicate detection

Identical pages are easy to identify with fingerprinting techniques.
However, crawl data will typically also contain near duplicates,
i.e., documents that differ only in trivial details, such as a date or
a header (e.g., the same tutorial posted on two sites with different
site-specific material at the beginning and/or end of the docu-
ment). In principle, near duplicates can be spotted by extracting
all n-grams of a certain length (e.g., 5-grams) from each docu-
ment and looking for documents that share a conspicuous amount
of such n-grams. However, for large corpora a procedure of this
sort will be extremely memory- and time-consuming. Standard
methods have been developed within the WWW-IR community
(see, e.g., Broder et al. 1997 and Chakrabarti 2002) to obtain an
estimate of the overlap between documents on the basis of random
selections of n-grams in a very efficient manner. These techniques
can also be used to find near duplicates in linguistic Web cor-

22



Silvia Bernardini, Marco Baroni and Stefan Evert

pora (a simplified version of Broder’s method has been used in the
clean-up of the WaCky corpora).

Notice that near duplicate spotting will work better if boil-
erplate stripping has been performed, as boilerplate is a source
of false positives (documents that look like near duplicates be-
cause they share a lot of boilerplate) as well as false negatives
(near duplicates that do not look as similar as they should be-
cause they contain different boilerplate). A more delicate issue
concerns document-internal duplicate detection, e.g., pages down-
loaded from a bulletin board that contain a question and several
follow-up postings with the question pasted into the replies. Not
only can this sort of duplication be hard to spot, but its removal
might disrupt the discourse flow of the document. Indeed, one
might wonder whether removal of document-internal duplication
is a theoretically justified move.18

3.4 Annotation

Tokenization, POS annotation and lemmatization of a Web corpus
that has undergone thorough clean-up are straightforward oper-
ations. However, one has to be careful about the peculiarities of
Web language, such as smileys, non-standard spelling, high density
of neologisms, acronyms, etc. Ideally, tokenizing rules should take
these aspects into account, and POS taggers should be re-trained
on Web data.

The diversified, ramshackle nature of a crawled Web corpus
means metadata are at the same time sorely needed (who is the
author of a page? is the author a native speaker? what is the
page about?) and difficult to add, both for technical reasons (the
sheer size of the corpus) and because the Web presents a wealth
of new “genres” and peculiar domains (how do you classify a page

18Indeed, if the corpus is seen as a random sample of the Web, any form of
(near-)duplicate removal becomes a theoretically dubious move.

23



WaCky!

about 9/11 written by a religious fanatic that is half blog and half
advertisement for his book?)

The articles of Sharoff and Ueyama in this volume report man-
ual classification of samples of Web corpus documents in terms of
genre, domain and other parameters. It is clear from these prelim-
inary investigations that the categories used to classify traditional
corpora, often based on library classification systems, have to be
extended and revised in order to account for Web data. At the
very least, the sizable proportion of “personal life” domains and
genres present on the Web requires a fine grained taxonomy that
is not present in traditional corpora (since they typically do not
contain many specimens of this sort). In order to annotate the
whole corpus, rather than a sample, one has of course to use au-
tomated, machine-learning techniques and, for very large corpora,
efficient methods will have to be adopted (see, e.g., Chakrabarti
et al. 2002).

While Sharoff and Ueyama categorize their Web corpus on a
document-by-document basis, as one would do with a traditional
corpus, Mehler and Gleim propose a rich representational system
for Web hypertext, acknowledging that, to find meaningful textual
units on the Web, we must look at whole webpages, which may or
may not be spread across multiple HTML files. Again, we see here
a difference in purpose. Traditional document-level annotation is
probably more appropriate if we see the Web as a very rich source
of data for what is ultimately to be used as a traditional corpus
representative of a specific natural language, whereas Mehler and
Gleim’s approach looks at Web text as an object of study in it-
self. In any case, to annotate a connected set of Web documents
according to Mehler and Gleim’s proposal, automated categoriza-
tions techniques are also needed. Whether and how the complex,
layered structures proposed by these authors can be induced us-
ing machine-learning techniques is an interesting topic for further
research.

24



Silvia Bernardini, Marco Baroni and Stefan Evert

4 Indexing and searching a Web corpus

After the collection and linguistic annotation of a Web corpus as
detailed in section 3, the data will typically be available as a col-
lection of plain text files, usually in one-word-per-line format or
in some XML format. The rich amount of authentic linguistic ev-
idence provided by such a corpus, however, is useful only to the
extent that the phenomena of interest can be retrieved from the
corpus by its users. Like data cleaning, tools to store and retrieve
linguistic data have been somewhat overlooked in traditional NLP
work. However, they become fundamental when handling very
large Web-derived corpora, where the classic ad hoc “disposable
retrieval script”approach often adopted by computational linguists
does no longer look like an attractive option. Development of in-
dexing and retrieval software featuring a powerful query syntax
and a user-friendly interface is probably the area in which most
work still needs to be done, before we can start seriously think-
ing of a fully fledged “linguist search engine”. Indeed, articles in
this collection deal with nearly all other aspects of WaC work, but
this is an area that is virtually unexplored by our authors. Con-
sequently, we dedicate the longest section of this introduction to
this topic.

In general, corpus data can be exploited in two ways: either
by sequential processing (a typical example would be unsupervised
training of a statistical NLP tool or a linguist reading through a
corpus sentence by sentence), or by targeted search for a certain
linguistic phenomenon (typically a particular lexical and/or syn-
tactic construction). This type of search is often called a corpus
query. A second distinction can be made between online process-
ing, which is fast enough to allow interactive refinement of searches
(for this purpose, query results should be available within a few
seconds, or at most several minutes) and offline processing, where
a task is started by the user and results might be ready for inspec-

25



WaCky!

tion after several hours or even days. For most linguistic purposes,
the focus will be on online corpus queries.

In the following subsections, we discuss the requirements for an
online query tool for Web corpora, henceforth called the WaCky
query engine. Section 4.1 introduces four general requirements on
software for the linguistic exploitation of Web corpora, as a basis
for the ensuing discussion. Section 4.2 addresses the expressive-
ness of the query language itself, followed by the related techni-
cal issues of corpus storage and indexing strategies in section 4.3.
Finally, section 4.4 argues for the combination of corpus queries
with precompiled frequency databases, drawing on the advantages
of both online and offline processing. The diverse components of
the WaCky query engine can then be integrated seamlessly under
a uniform Web interface that provides a familiar and convenient
front-end for novice and expert users alike.

4.1 Requirements for linguistic search

The main challenge that online query tools for Web corpora face
is to find a good balance between several conflicting requirements:

1. Expressiveness: The query tool should offer a flexible query
language that allows the formulation of sophisticated queries
to identify complex linguistic patterns in the corpus.

2. Ease of use: It should present a convenient and intuitive
front-end to novice users.

3. Performance: It should support fast online searches, with
response times that are short enough for interactive work
even on very large corpora.

4. Scalability : It should be able to handle Web corpora of a
billion words and more.

26



Silvia Bernardini, Marco Baroni and Stefan Evert

Different query tools will satisfy these requirements to varying
degrees, focusing either on expressiveness or on speed and conve-
nience. The two extremes of the range of possible approaches are
perhaps best embodied by the Google search engine on the one
hand (focusing on requirements 2–4) and the Nite XML Toolkit19

on the other (focusing on requirement 1). Google searches several
hundred billion words with ease and often returns the first page of
matches within less than one second. However, it is restricted to
simple Boolean queries on word forms, i.e., queries which test for
the co-occurrence or non-co-occurrence of given word forms within
the same document (a webpage, PDF file, etc.).20 In contrast to
this, the query language of the Nite XML Toolkit allows for com-
plex logical expressions that build on multiple layers of equally
complex linguistic annotations, but the current implementation is
only able to handle corpus sizes well below 100,000 words.

The discussion in the following subsections depends to some
extent on the type and complexity of annotations that have to be
supported. Hence we will briefly sketch our assumptions about the
annotations of Web corpora. Following section 3.4, we understand
a Web corpus essentially as a sequence of word form tokens anno-
tated with linguistic interpretations such as POS tags and lemmas.
As pointed out there, meta-information about the speaker/writer
of a text, its language, date of publication, genre, etc. is crucial
for many applications. In most cases, such metadata can be repre-
sented as simple attribute-value pairs attached to the documents
in the corpus (or to individual paragraphs, e.g., when a document
contains text in different languages). In addition to this most basic

19See section 4.2 below
20For some languages, including English, Google also performs stemming,

i.e., it attempts to remove morphological suffixes from search terms to broaden
the search. However, since stemming is not performed in a linguistically con-
sistent way and since it is not clear whether stemming can be disabled/enabled
explicitly (i.e., to search for literal word forms), this renders the Google search
engine unsuitable for many kinds of linguistic research.

27



WaCky!

set of linguistic annotations, shallow structural markup – ranging
from text structure (paragraphs, sentences, lists, tables, etc.) to
non-recursive chunk parsing – can significantly facilitate corpus
queries and can be added by automatic methods with sufficient
accuracy and efficiency. We will therefore also assume that many
Web corpora contain such structural markup, with start and end
points of structures indicated by non-recursive XML tags in the
text or XML files.

Many users would certainly also like to have access to complete
syntactic analyses of all sentences in the corpus, in the form of
parse trees or dependency graphs. Such highly structured datasets
put greater demands on the internal representation of corpus data,
and require a fundamentally different type of query language than
token-based annotations. Currently, we are not aware of any auto-
matic tools that would be able to perform deep syntactic analysis
with the required accuracy and coverage,21 and the computational
complexity of state-of-the-art systems leads to parse times rang-
ing from several seconds to several minutes per sentence, rendering
them unsuitable for the annotation of billion-word Web corpora.22

Therefore, in the following discussion we assume that Web corpora
are not annotated with complex syntactic structures. While this
assumption reduces the demands on representation formats, it also
means that the query language will have to provide sophisticated
search patterns to make up for the lack of pre-annotated syntactic
information.

21A recent statistical parser for German (Schiehlen, 2004) achieves F-scores
between 70% (for constituents) and 75% (for dependency relations). While
this level of accuracy might be sufficient for information retrieval and training
of statistical NLP models, it does not provide a reliable basis for linguistic
corpus queries.

22A syntactic parser that manages to analyze on average one word per second
(which is faster than most systems that we have tested on current off-the-shelf
hardware), would take 30 years to annotate a billion-word corpus.

28



Silvia Bernardini, Marco Baroni and Stefan Evert

4.2 A query tool for Web corpora

There is a wide range of query languages and implementations,
which can be used for linguistic searches of different complexity.
Here, we summarize the four most common approaches to corpus
queries and discuss their suitability for the WaCky query engine.

The simplest method is Boolean search, which identifies doc-
uments that contain certain combinations of search terms (ex-
pressed with the Boolean operators AND, OR and NOT, hence
the name). This basic type of Boolean search is exemplified by
the Google search engine. More advanced implementations such
as that provided by the open-source search engine Lucene23 allow
wildcard patterns for individual terms, constraints on metadata
and to some extent also on linguistic annotations, and proxim-
ity searches for terms that occur near each other (similar to Al-
taVista’s famous but discontinued NEAR operator). From the
perspective of Web corpora, such tools can be used to build a
simple concordancer that looks up individual keywords or phrases
with optional metadata constraints. Proximity search allows for
some variation in the phrases, and, with access to linguistic an-
notations, generalizations can also be expressed (e.g., that one of
the words in a phrase is an arbitrary noun rather than a partic-
ular one). However, the Boolean combination of search terms is
primarily designed to find documents about a particular topic (for
information retrieval purposes) and will rarely be useful to lin-
guists (although it could be used to identify simple collocational
patterns).

Most of the currently available query engines for large corpora
build on a regular query language.24 Prominent implementations
are the IMS Corpus WorkBench (CWB) with its query processor

23http://lucene.apache.org/
24“Regular” is used here as a the technical term from formal language theory,

i.e., referring to patterns that can be described by regular expressions and
finite-state automata.

29



WaCky!

CQP, the similar Manatee corpus manager (which is now part of
the Sketch Engine) and Xaira, the successor of the SARA query
tool supplied with the British National Corpus.25 All three im-
plementations are available under the GPL license. Regular query
languages typically use regular expressions at the level of words
and annotation values, and similar regular patterns to describe
contiguous sequences of words (CQP and Manatee use a basic reg-
ular expression syntax for these patterns, but queries could also
take the form of non-recursive rewrite-rule grammars, e.g., through
use of CQP’s built-in macro language). Many of these query lan-
guages extend the basic regular patterns. They may provide sup-
port for shallow structural markup, e.g., by inserting XML start
and end tags in the query expressions. In CQP, matching pairs of
start and end tags can be used to express shallow nesting of struc-
tures (e.g., PP within NP within S). Query languages will often
also allow constraints on metadata, either appended to a query
expression as “global constraints” or by pre-selecting a subcorpus
of suitable documents for the search.

Some systems go one step further and allow queries to be for-
mulated as context-free grammars. Unlike regular languages, this
approach can identify recursively nested patterns of arbitrary com-
plexity.26 In addition, linguists often find it more intuitive to de-
scribe a search pattern with familiar context-free phrase-structure
rules than to formulate an equivalent regular expression pattern
(even when recursion is not required). Gsearch27 is an offline
corpus query tool based on context-free grammars, which is also

25More information about these tools can be found at the following
URLs: http://cwb.sourceforge.net/ (CWB), http://www.textforge.cz/
download.html (Manatee), http://www.sketchengine.co.uk/ (Sketch En-
gine), and http://xaira.sourceforge.net/ (Xaira).

26As an example for such a structure, consider German noun phrase chunks,
which may – at least in principle – contain an unlimited number of recursively
nested, center-embedded noun phrases.

27http://www.hcrc.ed.ac.uk/gsearch/

30



Silvia Bernardini, Marco Baroni and Stefan Evert

available under the GPL license. We are currently not aware of
any software using context-free rules for online queries.

In order to make use of deep linguistic analyses such as parse
trees or dependency structures, graph-based query languages in-
terpret a corpus together with all its annotations as a directed
acyclic graph. Implementations of a graph-based query language
include tgrep,28 and the more recent TIGERSearch29 and Nite
XML Toolkit (NXT).30 While graph-based query languages ar-
guably offer the most flexible and powerful types of searches, they
are also computationally expensive. Therefore, current implemen-
tations are limited to corpus sizes far below those of typical Web
corpora.

The four approaches also differ in the type of results they re-
turn (the query matches). Boolean searches return matching doc-
uments or sets of tokens (i.e., instances of the search terms in
each document). Regular query languages return contiguous se-
quences of words that match the specified lexico-syntactic pattern,
and most implementations allow individual tokens within the se-
quence to be marked as “targets”. Context-free grammars also
return contiguous strings, but will often indicate substrings that
correspond to constituents of the grammar (i.e., left-hand sides of
the context-free rules), leading to a more structured search result.
Finally, graph-based query tools return arbitrary tuples of graph
nodes, which will often mix surface tokens with annotation nodes.

We consider regular query languages the most useful choice
for searching Web corpora, because they strike a good balance
between expressiveness and efficient implementation. Although a
more structured representation of query results would sometimes
be desirable, large result sets can only be stored and manipulated
efficiently when they are limited to contiguous sequences (which

28http://tedlab.mit.edu/~dr/Tgrep2/
29http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/
30http://nite.sourceforge.net/

31



WaCky!

can compactly be represented by their start and end positions).
Both the IMS Corpus WorkBench and Manatee seem to provide
a good starting point for the implementation of the WaCky query
engine. Being open-source software, they can be modified and ex-
tended to meet the requirements formulated in section 4.1. Since
Manatee is closely modeled on CQP, we will henceforth use the
label CQP (or, more generally, Corpus WorkBench) to refer col-
lectively to both tools. There is only very limited information
available on the query language and performance of Xaira at the
moment, hence we do not pursue this option any further.

4.3 Indexing and compression

For fast online queries, indexing of the corpus and its annotations
is essential in order to avoid linear search of the entire corpus data,
which will typically occupy many gigabytes of disk space (even up
to the terabyte range for broad crawls of the Web, cf. Clarke et
al. 2002). In the most common form, an index contains, for every
word and every annotation value, a complete ordered list of the
occurrences of the word or annotation in the corpus.31

With the help of an index, simple keyword queries can be per-
formed by direct lookup rather than by linear search through the
full corpus. Especially for low frequency terms, index-based search
can thus be faster by several orders of magnitude in some cases.
More complex queries can still make use of the index by narrowing
down the search space to stretches of text that contain an occur-
rence of the least frequent term specified: a query for noun phrases
ending in the noun beer only has to consider sentences (or even

31Web search engines can substantially reduce the data size of their index by
removing high frequency “stop words”, which are then ignored in user queries.
While this approach makes sense in an information retrieval setting (the word
the is not a good indicator of the topic of a given document, since it occurs al-
most everywhere), stop words will often play a central role in linguistic searches
and cannot be removed from the index.

32



Silvia Bernardini, Marco Baroni and Stefan Evert

smaller units) in which beer occurs at least once.
Index-based optimization of regular queries is often problem-

atic because of their sequential, “left-to-right” structure. If the
first term of a query is relatively infrequent, its occurrences can
be looked up in the index. Matching of the regular expression pat-
tern is then attempted only starting from these positions rather
than from every token in the corpus. Such a strategy is employed
by the CQP query processor, but it fails whenever the first query
term describes a high frequency category such as a determiner or
a noun.32 Using an infrequent term that occurs in another place
in the query for index lookup poses technical challenges. Because
of the complex patterns of alternatives, optionality and repeti-
tion allowed by a regular expression, it is non-trivial to determine
whether a given term must necessarily be part of every match
(only in this case can it be used for index lookup). Even when
such a term has been found, it will not be clear how far the start
position of a match might be away from an occurrence of the term,
so that the regular expression has to be matched “inside-out” from
the lookup term rather than in the common“left-to-right” fashion.

Index-based optimization fails completely for regular queries
that search for sequences of POS tags or other very general and
frequent categories, e.g., queries that function as a “local gram-
mar” for a particular syntactic construction. In this case, index
lookup will have no substantial benefit, even if the final result set
is very small. Optimization of such purely “grammatical” queries
would only be possible with an extended index that includes com-
binations of POS tags in various configurations, combinations of
POS tags with lexical elements, and perhaps also combinations of
high frequency words. However, there is no limit to the number
of relations that might need to be indexed: pairs of nearby POS

32The problem is compounded by the fact that there may be multiple po-
tential start positions for a match in a regular expression, if the expression
begins with optional elements or with a disjunction of alternatives.

33



WaCky!

tags at different levels of maximal distance, combinations of three
or more POS tags, etc. Comprehensive indexing would thus lead
to an explosive growth of data size beyond all practical limits.

Even in those cases where the index lookup narrows down the
search space drastically, the resulting performance gain will often
not be as large as one might have hoped. The reason for this be-
havior is that occurrences of the lookup term are usually spread
evenly across the corpus, so that matching the full regular expres-
sion query requires random access to the huge amount of corpus
data on disk. Purely index-based queries can be processed more
efficiently because they access data sequentially, reducing the num-
ber of disk seeks and data blocks that have to be loaded. Such
index-based implementations are straightforward and widely used
for Boolean queries. This is what makes search engines like Google
as fast as they are, and it may also be the key to fast online searches
through Web corpora. Both CQP and Manatee provide at least
rudimentary functionality for Boolean queries, though this feature
does not fit in well with their standard regular query languages.

A final topic to be addressed in this section is the issue of data
compression. Since disk reads are comparatively slow even when
the data are accessed sequentially, as much of the corpus data as
possible should be cached in main memory (where random access
also is much less detrimental than for on-disk data). Therefore,
better data compression translates directly into faster query exe-
cution: the benefits of a compact representation easily outweigh
the decompression overhead. The IMS Corpus WorkBench applies
specialized data compression techniques (Witten et al., 1999) both
to the corpus data (word forms and their annotations) and to the
index files.33 Aggressive data compression is not without draw-

33In this way, the disk size of a 100-million word corpus (including the index,
but without annotations) can be reduced to approximately 300 megabytes. For
comparison, a plain text version of the same corpus has a size of 500 megabytes,
and a gzip-compressed version has a size of 175 megabytes (but note that these

34



Silvia Bernardini, Marco Baroni and Stefan Evert

backs, though, mostly with respect to query execution speed. The
block compression technique used by the CWB to store sequences
of word forms and annotations makes random corpus access ex-
pensive even when the data are cached in main memory.34

To summarize the main points of this section, we have seen
that indexing is essential to process online queries fast enough
for interactive sessions. While basic indexing is a well-understood
technique, it is of limited use for most linguistically interesting
queries. Clearly, further research into suitable indexing techniques
is needed in order to develop a powerful and fast query engine for
Web corpora. The usefulness of data compression techniques is
debatable, provided that fast and large hard disks are available.
A stronger focus on extended indexes may be called for, not least
because compression has fewer drawbacks for index data than for
the text itself and its annotations.

4.4 The corpus as Web

While a powerful query language and a fast query processor are
certainly essential for the linguistic exploitation of Web corpora,
there are other important requirements as well. The potentially
huge result sets returned by a query have to be managed and pre-
sented to the user, a task for which query engines like CQP and
Manatee provide only rudimentary functionality. A minimum re-
quirement is that users must be able to browse the query results
(displayed with varying amounts of context), sort the matches ac-
cording to different criteria, and look at random subsets of the
results to get a broad overview. Especially for very large sets of
results, additional functionality is desirable that helps to reduce
and structure the massive amounts of data brought up by the

sizes do not include any index data).
34The reason is that for every access, an entire block of data (usually 256

tokens or more) containing the relevant token has to be decompressed.

35



WaCky!

corpus query. For instance, it should be possible to compute fre-
quency lists of the matching word sequences (or individual target
elements), to calculate distributions of the matches across meta-
data categories, and to identify collocations (in the sense of Sinclair
1991) or collostructions (Stefanowitsch & Gries 2003). All these
functions are provided by BNCweb, a user-friendly interface to the
British National Corpus (see, e.g., Hoffmann and Evert 2006).

While such analyses can be performed online for moderately
large result sets, more advanced analysis options (e.g., exhaustive
collocational analyses of the lexico-syntactic behavior of a word
and automatic identification of other terms and phrases that have
a similar distribution in the corpus) would further increase the
usefulness of Web corpus data. Such complex analysis functions
can only be performed offline, and the same is true for simpler
functions when they are applied to result sets that contain millions
of matches.

For each type of analysis, the final results can be represented
as a table of corpus frequencies, statistical coefficients, similarity
measures, etc. (usually linked back to individual query matches).
A relational database software is ideally suited to store, process
and query such tabular data structures (and this is the approach
that BNCweb takes). Such a database provides an excellent en-
vironment to combine results from online and offline processing,
where the latter can either stem from offline analysis of query
results or from precompiled frequency tables for common words
and phrases. We recommend the open-source implementation
MySQL,35 which is widely acclaimed for its stability, speed and
flexibility.

A sketch of an architecture for the WaCky search engine is
beginning to take shape, but we have to deal now with at least
three distinct software packages: the query engine proper, a result
browser, and a relational database. Moreover, at least two of these

35http://dev.mysql.com/downloads

36



Silvia Bernardini, Marco Baroni and Stefan Evert

tools require some amount of practice and in-depth knowledge of
their (not entirely intuitive) query languages in order to achieve
good results. Does this mean that Web corpora are essentially
inaccessible for novice and non-technical users?

The enormous popularity that Google enjoys among linguists
can only in part be explained by the fact that it makes an un-
precedented amount of language data available. We believe that
an equally important role is played by the fact that Google search
is easy to use and can be accessed through a familiar user inter-
face, presents results in a clear and tidy way, and that no instal-
lation procedure is necessary. For these reasons, we conjecture
that the success of the WaCky query engine and its acceptance
among linguists will hinge on its ability to offer a similarly user-
friendly, intuitive and familiar interface. As in the case of Google,
a Web interface has the potential to satisfy all three criteria. In
other words, we should not only use the Web as a corpus, but also
present the corpus as Web, i.e., provide access to Web corpora
in the style of a Web search engine. A crucial advantage of the
“corpus as Web” approach is that it allows us to hide the three (or
even more) quite different components of the WaCky query engine
behind a uniform Web interface. For the end user, the transition
between query engine, result browser and tables in a frequency
database will be seamless and unnoticeable, even if the technical
implementation of this integration is a complex task. The key in-
sight here is that complexity can and must be hidden from the
user. Once again, BNCweb provides a good illustration of this ap-
proach, and a substantial part of the functionality sketched here
has been implemented in the commercial Sketch Engine (built on
top of Manatee and MySQL).

What is most urgently needed by the community now is an
open-source implementation of a “corpus as Web” framework for
the WaCky query engine, which should be easily configurable and
extensible with new modules (providing, e.g., alternative visualiza-

37



WaCky!

tions of query results, additional analysis functions, or simplified
query languages that shorten the learning curve for new users). For
individual components of the system, open-source software pack-
ages are already available (such as the IMS Corpus WorkBench,
Manatee and MySQL, as well as specialized software packages for
statistical and distributional analyses), but may need to be im-
proved and extended in order to meet the requirements listed in
section 4.1. We are currently working on a detailed sketch of a
possible architecture for the WaCky query engine and suggestions
for the implementation of its components.

5 Conclusion

This introductory article looked at different ways in which the by
now ubiquitous expression Web as Corpus can be interpreted, and
provided an overview of the major issues involved in turning WaC
from hype to reality. While doing this, we tried to provide a survey
of some recurring themes in this collection, as well as describing
some of our current and future work.

Despite the many daunting tasks that we might encounter
on the way to its exploitation (actually, in part because of these
daunting tasks), the Web is probably the most exciting thing that
happened to data-intensive linguistics since the invention of the
computer, and we would like to conclude this introduction by re-
iterating our invitation to the readers to engage, with us, in the
WaCky adventure.

References

Baroni, M. and Bernardini, S. (2004). BootCaT: Bootstrapping
corpora and terms from the Web. Proceedings of LREC 2004,
1313-1316.

38



Silvia Bernardini, Marco Baroni and Stefan Evert

Baroni, M. and Kilgarriff, A. (2006). Large linguistically-processed
Web corpora for multiple languages. Proceedings of EACL 2006,
demo session, 87-90.

Baroni, M. and Ueyama, M. (2006). Building general- and special-
purpose corpora by Web crawling. Proceedings of the 13th NIJL
International Symposium, 31-40.

Baroni, M., Kilgarriff, A., Pomikálek, J., Rychlý, P. (2006). Web-
BootCaT: Instant domain-specific corpora to support human
translators. Proceedings of EAMT 2006, 247-252.

Broder, A., Glassman S., Manasse, M. and Zweig, M. (1997). Syn-
tactic clustering of the Web. Proceedings of the Sixth Interna-
tional World-Wide Web Conference

Chakrabarti, S. (2002). Mining the Web: Discovering knowledge
from hypertext data, San Francisco: Morgan Kaufmann.

Chakrabarti, S., Roy, S. and Soundalgekar, M. (2002). Fast and
accurate text classification via multiple linear discriminant pro-
jections. VLDB Journal 12(2), 170-185.

Chklovski, T. and Pantel, P. (2004). VerbOcean: Mining the Web
for fine-grained semantic verb relations. Proceedings of EMNLP-
04.

Clarke, C. L. A., Cormack, G. V., Laszlo, M., Lynam, T. R. and
Terra, E. L. (2002). The impact of corpus size on question an-
swering performance. Proceedings of SIGIR ’02).

Hoffmann, S. and Evert, S. (2006). BNCweb (CQP-edition): The
marriage of two corpus tools. In Braun, S., Kohn, K. and
Mukherjee, J. (eds.) Corpus technology and language pedagogy:
New resources, new tools, new methods, Frankfurt am Main:
Peter Lang, 177-195.

39



WaCky!

Jurafsky, D. and Martin, J. (2000). Speech and language process-
ing, Upper Saddle River: Prentice Hall.

Kilgarriff, A. and Grefenstette, G. (2003). Introduction to the
special issue on the Web as corpus. Computational Linguistics
29(3), 333-347.

Manning, Ch. and Schütze, H. (1999). Foundations of statistical
natural language processing, Boston: MIT Press.

Schiehlen, M. (2004). Annotation strategies for probabilistic pars-
ing in German. In Proceedings of COLING 2004, 390-396.

Sinclair, J. (1991). Corpus, concordance, collocation, Oxford,
OUP.

Stefanowitsch, A. and Gries, S. (2003). Collostructions: Investi-
gating the interaction of words and constructions. International
Journal of Corpus Linguistics, 8(2), 209-243.

Varantola, K. (2003). Translators and disposable corpora. In
Zanettin, F., Bernardini, S. and Stewart, D. (eds.) Corpora in
translator education, Manchester: St. Jerome, 379-388.

Witten, I. H., Moffat, A., and Bell, T. C. (1999). Managing giga-
bytes, 2nd edition, San Francisco: Morgan Kaufmann.

40


